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The object of the present paper is to study spacetimes admitting pseudo-projective
curvature tensor. At first we prove that a pseudo-projectively flat spacetime is Einstein
and hence it is of constant curvature and the energy momentum tensor of such a
spacetime satisfying Einstein’s field equation with cosmological constant is covariant
constant. Next, we prove that if the perfect fluid spacetime with vanishing pseudo-
projective curvature tensor obeys Einstein’s field equation without cosmological
constant, then the spacetime has constant energy density and isotropic pressure, and
the perfect fluid always behaves as a cosmological constant and also such a spacetime
is infinitesimally spatially isotropic relative to the unit timelike vector field U. More-
over, it is shown that a pseudo-projectively flat spacetime satisfying Einstein’s equa-
tion without cosmological constant for a purely electromagnetic distribution is an
Euclidean space. We also prove that under certain conditions a perfect fluid spacetime
with divergence-free pseudo-projective curvature is a Robertson-Walker spacetime
and the possible local cosmological structure of such a spacetime is of type I, D or O.
We also study dust-like fluid spacetime with vanishing pseudo-projective curvature
tensor. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4952699]

I. INTRODUCTION

The present paper is concerned with certain investigations in general relativity by the coordi-
nate free method of differential geometry. In this method of study, spacetime of general relativity
is regarded as a connected four dimensional semi-Riemannian manifold (M4, g) with Lorentzian
metric g with signature (−,+,+,+). The geometry of the Lorentzian manifold begins with the study
of the causal character of vectors of the manifold. It is due to this causality that the Lorentzian
manifold becomes a convenient choice for the study of general relativity. The Einstein’s equations31

(p. 337), imply that the energy-momentum tensor is of vanishing divergence. This requirement is
satisfied if the energy-momentum tensor is covariant-constant.5 In Ref. 5, M. C. Chaki and Sarbari
Ray showed that a general relativistic spacetime with covariant-constant energy-momentum tensor
is Ricci symmetric, that is, ∇S = 0, where S is the Ricci tensor of the spacetime. Several authors
studied spacetimes in several ways such as spacetimes with semisymmetric energy momentum
tensor by De and Velimirović,7 m-Projectively flat spacetimes by Zengin,39 pseudo Z symmetric
spacetimes by Mantica and Suh (Refs. 19 and 22), generalized quasi-Einstein spacetimes by Güler
and Demirbaǧ,12 generalized Robertson-Walker spacetimes by Arslan et al.,3 and many others.

The notion of pseudo-projective curvature tensor was introduced by Prasad32 and is defined as
follows:
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P⋆(X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X, Z)Y ]
− r

n
( a
n − 1

+ b)[g(Y, Z)X − g(X, Z)Y ], (1.1)

where a and b are constants with b , 0, R is the Riemannian curvature tensor of type (1,3), S is the
Ricci tensor of type (0,2), and r is the scalar curvature of the manifold.

If a = 1 and b = − 1
n−1 , then (1.1) reduces to the projective curvature tensor. A semi-Riemannian

manifold is called pseudo-projectively flat if P⋆ = 0 for n > 3. The pseudo-projective curvature tensor
has been studied by various authors in various ways such as Narain, Prakash, and Prasad,29 Nagaraja
and Somashekhara,28 Doǧru,8 Jaiswal and Ojha,15 and many others.

The present paper is organized as follows.
After introduction, in Section II, we characterize a spacetime with vanishing pseudo-projective

curvature tensor and some geometric properties of such a spacetime have been obtained. Sec-
tion III deals with the perfect fluid spacetime with vanishing pseudo-projective curvature tensor.
Perfect fluid spacetime with divergence-free pseudo-projective curvature tensor has been studied
in Section IV. Finally, we study dust fluid spacetime with vanishing pseudo-projective curvature
tensor.

II. SPACETIME WITH VANISHING PSEUDO-PROJECTIVE CURVATURE TENSOR

Let V4 be the spacetime of general relativity, then from Equation (1.1) we have

P̃⋆(X,Y, Z,W ) = aR̃(X,Y, Z,W ) + b[S(Y, Z)g(X,W ) − S(X, Z)g(Y,W )
− r

4
[a
3
+ b][g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )], (2.1)

where P̃⋆(X,Y, Z,W ) = g(P⋆(X,Y )Z,W ) and R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ).
If P̃⋆(X,Y, Z,W ) = 0, then Equation (2.1) leads to

aR(X,Y, Z,W ) + b[S(Y, Z)g(X, Z) − S(X, Z)g(Y,W )
− r

4
[a
3
+ b][g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )] = 0. (2.2)

Taking a frame field over X and W, we have from (2.2) that

(a + 3b)S(Y, Z) = (a + 3b) r
4
g(Y, Z), (2.3)

where S and r denote the Ricci tensor and the scalar curvature of the manifold, respectively.
Thus we can state the following.

Theorem 2.1. A pseudo-projectively flat spacetime is an Einstein spacetime, provided a +
3b , 0.

Again, Equations (2.2) and (2.3) give

R̃(X,Y, Z,W ) = r
12

[g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )]. (2.4)

Thus we can state the following.

Theorem 2.2. A pseudo-projectively flat spacetime is a spacetime of constant curvature, pro-
vided a + 3b , 0.

Remark. The spaces of constant curvature play a significant role in cosmology. The simplest
cosmological model is obtained by making the assumption that the universe is isotropic and homo-
geneous. This is known as cosmological principle. This principle, when translated into the language
of differential geometry, asserts that the three dimensional position space is a space of maximal
symmetry,37 that is, a space of constant curvature whose curvature depends upon time. The cosmo-
logical solution of Einstein equations which contains a three dimensional spacelike surface of
a constant curvature is the Robertson-Walker metrics, while four dimensional space of constant
curvature is the de Sitter model of the universe (Refs. 37 and 30).
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062501-3 Mallick, Suh, and De J. Math. Phys. 57, 062501 (2016)

Let us consider a spacetime satisfying the Einstein’s field equation with cosmological constant

S(X,Y ) − r
2
g(X,Y ) + λg(X,Y ) = κT(X,Y ), (2.5)

where S and r denote the Ricci tensor and scalar curvature, respectively. λ is the cosmological
constant, κ is the gravitational constant, and T(X,Y ) is the energy momentum tensor.

Using (2.3) and (2.5) we obtain

T(X,Y ) = 1
κ
[λ − r

4
]g(X,Y ). (2.6)

Taking covariant derivative of (2.6) we get

(∇ZT)(X,Y ) = − 1
4κ

dr(Z)g(X,Y ). (2.7)

Since pseudo-projectively flat spacetime is Einstein, therefore the scalar curvature r is constant.
Hence

dr(X) = 0, (2.8)

for all X .
Equations (2.7) and (2.8) together yield

(∇ZT)(X,Y ) = 0.

Thus we can state the following.

Theorem 2.3. In a pseudo-projectively flat spacetime satisfying Einstein’s field equation with
cosmological constant, the energy momentum tensor is covariant constant.

Katzin et al.17 were the pioneers in carrying out a detailed study of curvature collineation (CC),
in the context of the related particle and field conservation laws that may be admitted in the standard
form of general relativity.

The geometrical symmetries of a spacetime are expressed through equation

£ξA − 2ΩA = 0, (2.9)

where A represents a geometrical/physical quantity, £ξ denotes the Lie derivative with respect to the
vector field ξ, andΩ is a scalar.17

One of the most simple and widely used example is the metric inheritance symmetry for A = g
in (2.9) and for this case, ξ is the Killing vector field ifΩ = 0.

Therefore,

(£ξg)(X,Y ) = 2Ωg(X,Y ). (2.10)

A spacetime M is said to admit a symmetry called a curvature collineation (CC) (Refs. 9 and 10)
provided there exists a vector field ξ such that

(£ξR)(X,Y )Z = 0, (2.11)

where R is the Riemannian curvature tensor.
Now we shall investigate the role of such symmetry inheritance for the spacetime admitting

pseudo-projective curvature tensor.
Let us consider a spacetime admitting pseudo-projective curvature tensor with a Killing vector

field ξ is a CC. Then we have

(£ξg)(X,Y ) = 0. (2.12)

Again, since M admits a CC we have from (2.11)

(£ξS)(X,Y ) = 0, (2.13)

where S is the Ricci tensor of the manifold.
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Taking Lie derivative of (1.1) and then using (2.11), (2.12), and (2.13) we obtain

(£ξP⋆)(X,Y )Z = 0.

Thus we can state the following.

Theorem 2.4. If a spacetime M admitting the pseudo-projective curvature tensor with ξ as a
Killing vector field is CC, then the Lie derivative of the pseudo-projective curvature tensor vanishes
along the vector field ξ.

The well-known symmetry of the energy momentum tensor T is the matter collineation defined
by

(£ξT)(X,Y ) = 0,

where ξ is the vector field generating the symmetry and £ξ is the Lie derivative operator along the
vector field ξ.

Let ξ be a Killing vector field on the spacetime with vanishing pseudo-projective curvature
tensor. Then

(£ξg)(X,Y ) = 0, (2.14)

where £ξ denotes Lie derivative with respect to ξ.
Taking Lie derivatives of both sides of (2.6) with respect to ξ we obtain

1
κ
(λ − r

4
)(£ξg)(X,Y ) = (£ξT)(X,Y ). (2.15)

In virtue of (2.14), it follows from (2.15) that

(£ξT)(X,Y ) = 0,

which implies that the spacetime admits matter collineation.
Conversely, if (£ξT)(X,Y ) = 0, it follows from (2.15) that

(£ξg)(X,Y ) = 0.

Hence we can state the following theorem.

Theorem 2.5. If a spacetime obeying Einstein’s field equation has vanishing pseudo-projective
curvature tensor, then the spacetime admits matter collineation with respect to a vector field ξ if and
only if ξ is a Killing vector field.

Next, let us suppose that ξ is a conformal Killing vector field. Then we have

(£ξg)(X,Y ) = 2φg(X,Y ), (2.16)

where φ is a scalar.
Then from (2.15) we get

(λ − r
4
)2φg(X,Y ) = κ(£ξT)(X,Y ). (2.17)

Using (2.6) in (2.17) we obtain

(£ξT)(X,Y ) = 2φT(X,Y ). (2.18)

From (2.18) we can say that the energy-momentum tensor has Lie inheritance property along ξ.
Conversely, if (2.18) holds, then it follows that (2.16) holds, that is, ξ is a conformal Killing

vector field. Thus we state the following.

Theorem 2.6. If a spacetime obeying Einstein’s field equation has vanishing pseudo-projective
curvature tensor, then a vector field ξ on the spacetime is a conformal Killing vector field if and only
if the energy-momentum tensor has the Lie inheritance property along ξ.
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III. PERFECT FLUID SPACETIME WITH VANISHING PSEUDO-PROJECTIVE
CURVATURE TENSOR

In this section we consider a perfect fluid spacetime with vanishing pseudo-projective curvature
tensor obeying Einstein’s field equation without cosmological constant.

The energy momentum tensor T of a perfect fluid is given by31

T(X,Y ) = (σ + p)A(X)A(Y ) + pg(X,Y ), (3.1)

where σ is the energy density, p the isotropic pressure, and A is a non-zero 1-form such that
g(X,U) = A(X), for all X , U being the velocity vector field of the flow, that is, g(U,U) = −1.

Einstein’s field equation without cosmological constant is given by

S(X,Y ) − r
2
g(X,Y ) = κT(X,Y ), (3.2)

where r is the scalar curvature of the manifold and κ , 0.
In this case Einstein’s equation can be written as

− ( r
4
+ kp)g(X,Y ) = κ(σ + p)A(X)A(Y ). (3.3)

Taking a frame field and after contraction over X , Y we obtain

r = κ(σ − 3p). (3.4)

In virtue of (2.3) and (3.4) the Ricci tensor of a pseudo-projectively flat spacetime can be written as

S(X,Y ) = κ(σ − 3p)
4

g(X,Y ). (3.5)

Let Q be the Ricci operator given by

g(QX,Y ) = S(X,Y )
and

S(QX,Y ) = S2(X,Y ).
Then we obtain that

A(QX) = g(QX,U) = S(X,U).
Hence we get from (3.5) that

S(QX,Y ) = κ2(σ − 3p)2
16

g(X,Y ). (3.6)

Taking a frame field and after contraction over X , Y , we obtain from (3.6) that

∥Q∥2 =
κ2(σ − 3p)2

4
. (3.7)

Hence we obtain the following result.

Theorem 3.1. If a pseudo-projectively flat perfect fluid spacetime obeys Einstein’s field equa-
tion without cosmological constant, then the square of the length of the Ricci operator of the
spacetime is κ2(σ−3p)2

4 .

Now putting X = Y = U in (3.3) we obtain

r = 4κσ. (3.8)

Equations (3.4) and (3.8) together give σ + p = 0. Therefore Equation (3.1) in this case takes the
form

T(X,Y ) = pg(X,Y ). (3.9)

Since the scalar curvature r of a pseudo-projectively flat spacetime is constant, therefore from (3.8)
it follows that σ = constant and hence from σ + p = 0 we obtain p = constant. Now σ + p = 0
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means the fluid behaves as a cosmological constant.38 This is also termed as phantom barrier.6 Now
in a cosmology we know such a choice σ = −p leads to rapid expansion of the spacetime which is
now termed as inflation.2

Thus we can state the following.

Theorem 3.2. If a perfect fluid spacetime with vanishing pseudo-projective curvature tensor
obeying Einstein’s equation without cosmological constant, then the spacetime has constant energy
density and isotropic pressure and the spacetime represents inflation and also the fluid behaves as a
cosmological constant.

We know34 that if the Ricci tensor S of type (0,2) of the spacetime satisfies condition

S(X,X) > 0, (3.10)

for every timelike vector field X, then (3.10) is called the timelike convergence condition.
Equations (3.1) and (3.2) together yield

S(X,Y ) − r
2
g(X,Y ) = κ[(σ + p)A(X)A(Y ) + pg(X,Y )]. (3.11)

Putting X = Y = U in (3.11) and using (3.4) we obtain

S(U,U) = κ(σ + 3p)
2

. (3.12)

Since the spacetime under consideration satisfies the timelike convergence condition and κ > 0, we
have

σ + 3p > 0. (3.13)

The inequality (3.13) shows that the spacetime under consideration obeys cosmic strong energy
condition.

Thus we can state the following.

Theorem 3.3. If a pseudo-projectively flat perfect fluid spacetime satisfying Einstein’s equa-
tion without cosmological constant obeys the timelike convergence condition, then such a spacetime
also satisfies cosmic strong energy condition.

Let us suppose that the scalar curvature r of the spacetime be positive. Then from (3.4) we have

σ > 3p. (3.14)

Now Equations (3.13) and (3.14) together yield σ > 0. This means that the spacetime under consid-
eration consists of pure matter.

Thus we have the following result.

Theorem 3.4. If a pseudo-projectively flat perfect fluid spacetime satisfying Einstein’s equa-
tion without cosmological constant obeys the timelike convergence condition, then such a spacetime
contains pure matter, provided the scalar curvature r is positive.

Taking a frame field after contraction over X and Y we get from (3.2) that

r = −κt, (3.15)

where t = trace T .
Therefore, Equation (3.2) can be written as

S(X,Y ) = κ[T(X,Y ) − t
2
g(X,Y )]. (3.16)

Einstein’s field equation without cosmological constant for a purely electromagnetic distribution
takes the form1

S(X,Y ) = κT(X,Y ). (3.17)

In Ref 38, p. 61, this kind of spacetime is called “pure radiation field” (or null dust) and its energy
momentum tensor is given by Tkl = Φ

2XkXl, being XkX k = 0.
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062501-7 Mallick, Suh, and De J. Math. Phys. 57, 062501 (2016)

Using (3.16) and (3.17) we obtain t = 0. Thus from (3.15) we get r = 0. Hence from (2.4) we
obtain R̃(X,Y, Z,W ) = 0 which means that the spacetime is flat.

Thus we can state the following.

Theorem 3.5. A pseudo-projectively flat spacetime satisfying Einstein’s equation without
cosmological constant for a purely electromagnetic distribution is an Euclidean space.

Remark 1. This theorem points out towards a condition under which a semi-Riemannian space
can be reduced to an Euclidean space.

Remark 2. Since for a pure radiation field t = 0, here we obtain from (3.15) that r = 0 and
consequently from (3.4) we obtain σ = 3p. In Ref. 38, p. 63, pure radiation field may be considered
as representing the incoherent superposition of waves with random phases and polarization but the
same propagation direction. This is also used to describe perfect fluids with σ = 3p (incoherent
radiation) (Ref. 38, p. 66).

In a pseudo-projectively flat perfect fluid spacetime, from (2.4) it follows that the curvature
tensor R is given by

R(X,Y )Z = r
12

[g(Y, Z)X − g(X, Z)Y ], (3.18)

where r is the scalar curvature of the spacetime.
Since pseudo-projectively flat spacetime is Einstein space, it follows that r = constant. Let U⊥

denote the 3-dimensional distribution in a quasi-conformally flat perfect fluid spacetime orthogonal
to U.

Then

R(X,Y )Z = r
12

[g(Y, Z)X − g(X, Z)Y ], (3.19)

for all X ,Y ,Z ∈ U⊥ and

R(X,U)U = − r
12

X, (3.20)

for every X∈ U⊥.
According to Karchar16 a Lorentzian manifold is called infinitesimally spatially isotropic rela-

tive to timelike unit vector field U if its curvature tensor R satisfies the relation

R(X,Y )Z = l[g(Y, Z)X − g(X, Z)Y ], (3.21)

for all X ,Y ,Z ∈ U⊥ and R(X,U)U = mX for all X∈ U⊥, where l, m are real valued function on the
manifold. So by virtue of (3.19) and (3.20) we can state the following.

Theorem 3.6. A pseudo-projectively flat perfect fluid spacetime obeying the Einstein’s field
equation without cosmological constant and having the vector field U as the velocity vector field is
infinitesimally spatially isotropic relative to the unit timelike vector field U.

IV. PERFECT FLUID SPACETIMES WITH DIVERGENCE-FREE PSEUDO-PROJECTIVE
CURVATURE TENSOR

In this section we consider a perfect fluid spacetime with divergence-free pseudo-projective
curvature tensor.

Definition. A spacetime is said to be pseudo-projective conservative if

(divP∗)(X,Y, Z) = 0,

where “div” denotes the divergence.
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Definition. A symmetric (0,2) type tensor field E on a semi-Riemannian manifold (Mn, g) is
said to be of Codazzi type if it satisfies the equation

(∇XE)(Y, Z) = (∇YE)(X, Z),
for arbitrary vector fields X , Y , and Z .

From Equation (1.1) we obtain for a spacetime that

(divP∗)(X,Y, Z) = (a + b)[(∇XS)(Y, Z) − (∇YS)(X, Z)]
−1

4
(a
3
+ b)[g(X, Z)dr(Y ) − g(Y, Z)dr(X)]. (4.1)

Equation (4.1) is a particular case for the expression of the divergence of some generalized
curvature (that is, curvature tensors satisfying Ki jkl = −K j ikl = −Ki jlk, Ki jkl + K jk il + Kki jl = 0 as
defined in Ref. 18), namely,

∇mKm
jkl = A∇mRm

jkl + B[(∇ jR)gkl − (∇kR)gjl],
where A and B are constants (see Ref. 27 Proposition 4.6., Ref. 20 Theorem 2.2., and Ref. 21
Theorem 3.7.). In these papers the authors proved that if ∇mKm

jkl
= 0 and the condition B , A

2(n−1) is
satisfied, then the scalar curvature is a covariant constant ∇lR = 0. Thus dr(X) = 0 can be derived
from divP∗ = 0, provided a , − 5b

3 . However, divP∗ = 0 and dr(X) = 0 imply divC = 0, where C is
the conformal curvature tensor.

The conditions divC = 0 and dr(X) = 0 are equivalent to have a “Yang Pure Space” (see Ref. 13
Eq. (2)). In Ref. 13, Theorem 4.1 the authors proved that a 4-dimensional perfect fluid spacetime with
p + σ , 0 is a Yang pure space if and only if it is a Robertson-Walker spacetime. For results about
perfect fluids with divergence-free Weyl tensor see for example Refs. 35 and 26.

Thus we can state the following theorem.

Theorem 4.1. A perfect fluid spacetime with divergence-free pseudo-projective curvature tensor
is a Robertson-Walker spacetime, provided a , − 5b

3 .

Now using divP∗ = 0 and dr(X) = 0 in (4.1) we obtain

(∇XS)(Y, Z) − (∇YS)(X, Z) = 0. (4.2)

Hence using (3.2) and (4.2) we have

(∇XT)(Y, Z) − (∇YT)(X, Z) = 0. (4.3)

Thus we can state the following.

Theorem 4.2. In a perfect fluid spacetime with divergence-free pseudo-projective curvature
tensor the energy momentum tensor is of Codazzi type, provided a , − 5b

3 .

But it is proved that if in a perfect fluid spacetime the energy momentum tensor is of Codazzi
type then each of the shear and vorticity of the fluid vanishes and its velocity vector field is hyper-
surface orthogonal, i.e., its velocity vector field is proportional to the gradient vector field of the
energy density (Refs. 11 and 33).

Hence from the above results, we can state the following.

Theorem 4.3. In a perfect fluid spacetime with divergence-free pseudo-projective curvature
tensor each of the shear and vorticity of the fluid vanishes and its velocity vector field is hypersur-
face orthogonal, i.e., its velocity vector field is proportional to the gradient vector field of the energy
density, provided a , − 5b

3 .

It has been proved by Barnes4 that if a perfect fluid spacetime is shear-free and vorticity-free,
the velocity vector field U is hypersurface orthogonal, and the energy density is constant over a
hypersurface orthogonal to U, then the possible local cosmological structures of the spacetime are
of Petrov type I, D, or O.

In view of Theorem 4.3 and the result of Barnes leads to the following theorem.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  155.230.186.57

On: Sat, 04 Jun 2016 04:01:22



062501-9 Mallick, Suh, and De J. Math. Phys. 57, 062501 (2016)

Theorem 4.4. If a perfect fluid spacetime is of divergence-free pseudo-projective curvature
tensor, then the possible local cosmological structure of such a spacetime is of type I, D, or O,
provided a , − 5b

3 .

Remark 3. Theorem 4.4 can be derived in an alternative and shorter way. Since the energy
momentum tensor is a Codazzi tensor, from Equation (7) in Ref. 23 (see also Refs. 24 and 25) we
have

TimCm
jkl + TjmCm

kil + TkmCm
i jl = 0

and the manifold is named “Weyl compatible” (see Ref. 19). From Equation (3.1) it is

uiumCm
jkl + u jumCm

kil + ukumCm
i jl = 0

and the spacetime is “purely electric” (see Refs. 14 and 19 Theorem 3.3. and Ref. 25). It is well
known that purely electric spacetimes are of Petrov types I, D, or O (conformally flat) (see Ref. 38,
or Ref. 19 Theorem 3.4. and Ref. 14)

V. DUST FLUID SPACETIME WITH VANISHING PSEUDO-PROJECTIVE
CURVATURE TENSOR

In a dust or pressureless fluid spacetime, the energy momentum tensor is of the form36

T(X,Y ) = σA(X)A(Y ), (5.1)

where σ is the energy density of the dust-like matter and A is a non-zero 1-form such that
g(X,U) = A(X), for all X , U being the velocity vector field of the flow, that is, g(U,U) = −1.

Using (2.6) and (5.1) we obtain

(λ − r
4
)g(X,Y ) = κσA(X)A(Y ). (5.2)

A frame field after contraction over X and Y leads to

λ =
r
4
− κσ

4
. (5.3)

Again, if we put X = Y = U in (5.2), we get

λ =
r
4
− κσ. (5.4)

Thus combining the Equations (5.3) and (5.4), we finally obtain that

σ = 0. (5.5)

Thus from (5.1) and (5.5) we conclude that

T(X,Y ) = 0.

This means that the spacetime is devoid of the matter. Thus we can state the following.

Theorem 5.1. A pseudo-projectively flat dust fluid spacetime satisfying Einstein’s field equa-
tion with cosmological constant is vacuum.
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12 Güler, S. and Demirbaǧ, S. A., “A study of generalized quasi-Einstein spacetimes with applications in general relativity,”

Int. J. Theor. Phys. 55, 548-562 (2016).
13 Guilfoyle, B. S. and Nolan, B. C., “Yang’s gravitational theory,” Gen. Relativ. Gravitation 30(3), 473-495 (1998).
14 Hervik, S., Ortaggio, M., and Wylleman, L., “Minimal tensors and purely electric and magnetic spacetimes of arbitrary

dimensions,” Classical Quantum Gravity 30, 165014 (2013).
15 Jaiswal, J. P. and Ojha, R. H., “On weak pseudo-projective symmetric manifilds, Differ,” Geom. Dyn. Syst. 12, 83-94 (2010).
16 Karchar, H., “Infinitesimal characterization of Friedmann universe,” Arch. Math. Basel 38, 58-64 (1992).
17 Katzin, G. H., Levine, J., and Davis, W. R., “Curvature collineations: A fundamental symmetry property of the spacetime of

general relativity defined by the vanishing Lie derivative of the Riemannian curvature tensor,” J. Math. Phys. 10, 617-629
(1969).

18 Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry (Inter-Science, New York, 1963), Vol. 1.
19 Mantica, C. A. and Suh, Y. J., “Pseudo Z symmetric spacetimes,” J. Math. Phys. 55, 042502 (2014).
20 Mantica, C. A. and Suh, Y. J., “Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors,” Int. J. Geom.

Methods Mod. Phys. 9, 1250004 (2012).
21 Mantica, C. A. and Suh, Y. J., “Recurrent Z-forms on Riemannian and Kaeheler manifolds,” Int. J. Geom. Methods Mod.

Phys. 9, 1250059 (2012).
22 Mantica, C. A. and Suh, Y. J., “Pseudo Z symmetric spacetimes with divergence-free Wyel tensor and pp-waves,” Int. J.

Geom. Methods Mod. Phys. 13, 1650015 (2016).
23 Mantica, C. A. and Molinari, L. G., “Weyl compatible tensors,” Int. J. Geom. Methods Mod. Phys. 11, 1450070 (2014).
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